BIG TIME!

Different units of measurement are used to express time; although for the international system time should be indicated using the second, in everyday life we also use other ways.

Minutes and hours are the most frequent, as well as days, weeks and months.
For some people moving from one unit of measurement to another can be problematic, and errors in this conversion may affect the organization of a trip or the planning of a task. Let's see together how to convert time!

Co-funded by the
Erasmus+ Programme
of the European Union

Main information

Content	Quantity and number; Multiplication and division; Decimal numbers
Target group	Adults and young adults; Learners have knowledge of basic concepts of mathematics;
Learning intention	Numeracy for personal and private purposes
Duration	2UE
Material and resources	Picture cards, exercises
Group size	Range from 4 to 18 learners
Problem statement	Different measurements are used to express time: seconds, minutes, hours, days, weeks, months....for some people moving from one unit of measurement to another could be problematic, and errors in this conversion may, for example, affect the organization and the planning of a trip. There are some rules to convert time and this activity is focus on these.
Working questions	- How is time expressed? - Which unit of measurement to express time do you use the most? - Do you know how to convert time measurements? - Have you ever had difficulty switching from one unit of measurement to another?
Learning outcomes and results	Learners will be able to work with time conversions

Working plan

Time (lessons)	Description of content/activities	Material	Methodical and didactic information
45^{\prime}	1.Discover The teacher introduces the topic based on the "working questions".	Based on the knowledge of the learners this phase can be conducted differently. If the learners turn out to have a good knowledge on the topic, they can explain the part related to the conversion, clearly with the assistance and support of the teacher. Otherwise, this activity can be managed through a frontal lesson.	Diagrams, charts, picture cards
2. Time conversion exercises	Explicit teaching Questioning		
Learners are assigned exercises regarding the conversion of time into the different units of measurement. Some exercises are also based on real situations (e.g. duration of shows at the cinema/theatre, train journeys or other means of transport).	exercises	[This activity can be linked to another where students are required to plan a trip (means of transport, activities, etc.) giving them material in which the relative timing is indicated with different measurement units.]	Hands on learning

$\left.\begin{array}{|l|l|l|l|}\hline 45^{\prime} & \begin{array}{l}\text { [Potentially 2.1 time operations } \\ \text { on Excel] }\end{array} & \begin{array}{l}\text { If there is the possibility, at the } \\ \text { discretion of the teacher, this } \\ \text { topic can also be treated by } \\ \text { inserting a bit of computer } \\ \text { science. Learners are taught how } \\ \text { to use spreadsheets to manage } \\ \text { time operations. }\end{array} & \begin{array}{l}\text { Computers } \\ \text { An activity on which to test them } \\ \text { is, for example, the calculation of } \\ \text { the total hours worked in a month } \\ \text { or a certain period by simply } \\ \text { inserting the entries and exits } \\ \text { from work. }\end{array}\end{array} \begin{array}{l}\text { Explicit } \\ \text { learning } \\ \text { Collaborations } \\ \text { Hands on } \\ \text { learning }\end{array}\right\}$

Appendix

https://www.youmath.it/lezioni/fisica/unita-di-misura/equivalenze/2874-equivalenze-misuretempo.html\#:~:text=Secondi\%2C\ minuti\ ed\ ore\ rientrano,\%3D\ 60\ minuti\ \% 3D\%203600\%20secondi.
https://npronline.tech/npr-matematica/grandezze-e-misure/grandezze-e-misure-esercizi-conversione-misure-di-tempo-parte-1/

Tabella conversione misure di tempo

	Secondi	Minuti	Ore	Giorni	Settimane	Anni solari	Anni civili	Anni bisestili
1 secondo $(1 \mathrm{~s})$	1	0,01667	$2,778 \times 10^{-4}$	$1,157 \times 10^{-5}$	$1,653 \times 10^{-6}$	$3,169 \times 10^{-8}$	$3,171 \times 10^{-8}$	$3,162 \times 10^{-8}$
1 minuto $(1$ min $)$	60	1	0,01667	$6,944 \times 10^{-4}$	$9,92 \times 10^{-5}$	$1,901 \times 10^{-6}$	$1,902 \times 10^{-6}$	$1,897 \times 10^{-6}$
1 rora $(1 \mathrm{~h})$	3600	60	1	0,0417	$5,952 \times 10^{-3}$	$1,1407 \times 10^{-4}$	$1,1415 \times 10^{-4}$	$1,1384 \times 10^{-4}$
1 giorno (solare medio $)$	86400	1440	24	1	0,143	$2,737 \times 10^{-3}$	$2,739 \times 10^{-3}$	$2,732 \times 10^{-3}$
1 settimana	$\mathbf{6 0 4 8 0 0}$	10080	168	7	1	0,01916	0,01917	0,01912
1 anno solare	$\mathbf{3 1 5 5 6 9 2 5}$	525948,75	8765,8125	365,242	52,177	1	1,00066	0,9979
1 anno civile	$\mathbf{3 1 5 3 6 0 0 0}$	525600	8760	365	52,143	0,9993	1	0,9973
1 anno bisestile	$\mathbf{3 1 6 2 2 4 0 0}$	527040	8784	366	52,286	1,00207	1,00274	1

Some examples of exercise:

Quanti minuti sono necessari al treno TN33065 per percorrere il tratto Treviglio- Brescia?

Numeracy in practice

teaching and learning examples

Se prendi il treno che parte da Roma Termini alle 12:36, quanto tempo (in ore) dura il viaggio fino a Firenze Santa Maria Novella??

