ROULETTE OR PIGGY BANK?

Numerous films offer different scenes shot in casinos in which the protagonist usually ends up taking home a substantial sum. Seeing these frames might seem almost obvious to win at games like roulette, but is it really like that? Using simple combinations of favorable cases on possible cases, you can evaluate the reality and randomness of a possible, but unlikely winning.

Overview "ROULETTE OR PIGGY BANK"

Main information

Contents	Whole numbers; percentages; Use of spreadsheets.
Target group	Adults and young adults Basic skills in mathematics (particularly percentages and proportions) and computer science (basic Excel).
Intention of learning	- Numeracy for personal and private purposes - Numeracy to understand society
Duration	4 hours
Material and resources	Movies, online simulator, blackboard, computers, projector.
Group size	Ranges from 6 to 8 learners
Declaration of problem	Is there a talent in the game of roulette? What is the realchance to win this game?
	Often, especially watching some movie scenes, it may seem like a simple and secure winning game, but before you let yourself be tempted by the casino table it is good to know that in reality it is possible to predict the possibility of real winning and consequently evaluate if it is really worth it.
Job applications	- Have you ever played roulette? - Do you know the mechanisms of the game? - How much will you win by betting EUR 1 on 7? - Why does the dealer always win? - How should the winnings be calculated? ... and how is it in reality? - Let's try to bet five laps? (Using online Simulator) - What results have we achieved? - How to make a model on Excel?
Risultati e Risulta ti of learning	Students are able to have a real perception between safe spending and random gain.
Rife r im and $n t$ either in the quadr or national of which	

Co-funded by the

Work plan

Time (lessons)	Description of content/activity	Material	Methodical and didactic information
30'+	1. Discover The teacher, using images or movies, introduces the theme of the activity using some of the questions in the "Work Questions" section.		Frontal lesson;
	This phase of the activity can be carried out through an open discussion with the students who compare and interact with each other.	Videos or images taken from movies.	Discussion; Interaction; Questioning.
	[In the event that students do not know the game and the mechanisms of roulette, the teacher will play this part of the lesson in a frontal way.]		
$30^{\prime}+30^{\prime}$	2.1 Simulation		
	Using an online simulator, students will try to play writing down the results obtained.	Online simulator;	Interaction;
		Internet connection;	Hands on learning;
	2.2 Guided exercise	Headlamp;	Frontal lesson.
	ts an exercise that will be carried out under his guidance.	Exercises prepared.	
$45^{\prime}+15^{\prime}$	3.1 Exercise independently		
	Students are offered an exercise similar to that carried out in point 2.2; In this phase, students will work in pairs.	Exercises	Hands on learning; Collaborative learning;
	3.2 Correction and comments		Discussion.
	The exercises carried out in point 3.1 shall be corrected. A brief phase follows in which the results and the initial questions asked in point 1 are discussed together.		

Co-funded by the
Erasmus+ Programme
$30^{\prime}+60^{\prime}$ 4.1 Exercise on Excel
An exercise on excel previously prepared by the teacher is exhibited; the exercise in question will be similar to those carried out in points 3.

This part will be preparatory to the construction of the model on excel (see section 4.2).

4.2 Model construction

The construction of the model on excel is guided by the teacher. A part of the explanation of the excel functions and subsequent use is required.

Once the model is created, it is tested using one of the exercises previously performed.

4.3 Discussion

At the end of the activity learners are exhorted to comment and express their ideas.
[Have their beliefs changed by evaluating the matter from a mathematical point of view?]

Appendix

1.DISCOVER

2.1 SIMULATION

2.2 GUIDED EXERCISE

For example:
"CHOOSE A NUMBER FROM 0 TO 36 FOR 5 TIMES (IT CAN EVEN BE THE SAME ALL 5 TIMES), KNOWING THAT YOU HAVE A TOTAL BUDGET OF 20 EUROS, HOW MUCH DO YOU EXPECT TO WIN?"

