

Numeracy in practice teaching and learning examples

URBAN SUBDIVISION

Today, through algorithms and calculations linked to the GPS system, it is possible to reach any point of your urban space, without particular difficulties. The model below aims to propose a calculation system based on the subdivision of the Roman urbe (*CARDO and DECUMANO*)

**** * * ***

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

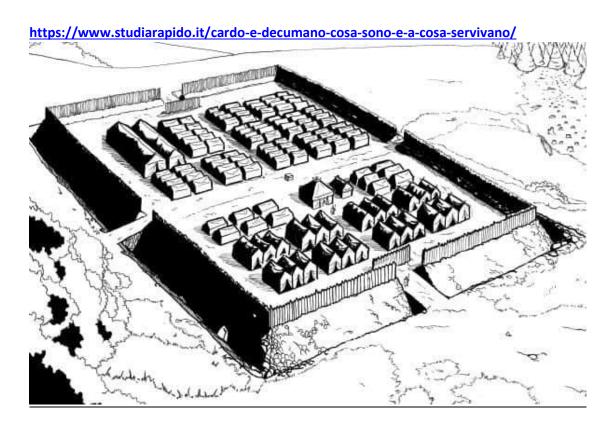
Main information				
Content	Natural numbers; decimal numbers; calculations of areas and perimeters (generic geometric calculations)			
Target group	Adults and young adults; Students are familiar with geometric calculus, they are people looking for alternative tools according to the achievement of an urban destination.			
Learning intention	 Numeracy for personal and private purposes Numeracy to understand the urban subdivision and the toponymy 			
Duration	3 hours (approximately)			
Material and resources	Historical sources relating to the Roman urban subdivision and books and exercises of geometry			
Group size	4 students			
Problem statement	Finding the correct dimensions of a given urban space involves the knowledge of mathematical/geometric disciplines. This knowledge can be translated into simplified actions based on the structuring of algorithms.			
Working questions	 What is an urban area? What are the systems to calculate the perimeter and the area? What are the consequences from the point of view of institutional toponymism? 			
Learning outcomes and results	Students will understand the effect of geometrical calculation of different urban areas and they will be able to make informed decisions about it.			
Reference to the National Qualification Frame				

Working plan

Time (lessons)	Description of content/activities	Material	Methodical and didactic information
30' +	1.Discover This activity is conducted initially simply by guiding the discussion with some questions, in order to evaluate students' knowledge related to the topic. At the end of this phase, the	Slides	Discussion [explicit teaching if need be]
	teacher will understand whether or not it is necessary to deepen the concept of urban subdivision.		
60'	2. Calculate the spaces Students are initially asked how to calculate simple areas and perimeters. A brief discussion of the proposed ideas follows and finally, if necessary, the teacher shows, explains and makes comprehensible the mathematical formula to calculate exactly geometric spaces. In closing, different situations are submitted to learners who are asked to calculate an urban subdivision congruent with the data provided.	Situations and calculations consistent with the urban reference axis; calculator	Discussion Collaborative learning Explicit teaching
45'	3. Evaluate the different proposals The teacher provides several geometric calculation proposals: then asks students to evaluate the most useful for the purpose of urban subdivision and to discuss together what are the criteria used to make a careful assessment of the issue.	Real urban division situations and reflexes on toponymy Calculator	Collaborative learning (couples)

30' +	4. Discussion	
	The Working Groups share the assessments and considerations that emerged during phase 3.	Discussion Feedback
	A phase of exchange of views followed.	

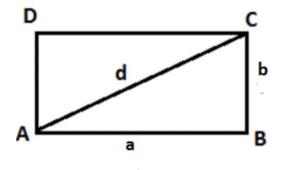
Appendix


1.Discover

https://www.garmin.com/it-IT/aboutgps/

COS'È IL GPS?

II GPS (Global Positioning System) è un sistema di navigazione satellitare di proprietà del governo degli Stati Uniti che, attualmente, comprende 24 satelliti operativi. II GPS funziona con qualsiasi condizione meteorologica, ovunque nel mondo, 24 ore su 24 e non prevede tariffe di abbonamento o costi di configurazione. Il Dipartimento della Difesa degli Stati Uniti (U.S. Department of Defense, USDOD) ha inizialmente mandato i satelliti in orbita per scopi militari, ma negli anni '80 questi sono stati resi disponibili per l'uso civile.


2. Calculate the spaces

https://www.geody.com/geometry/geometria_it.php

AN EXAMPLE OF GEOMETRY PROBLEM:

PROBLEMA 1: UN RETTANGOLO HA LA BASE E L'ALTEZZA CHE MISURANO, RISPETTIVAMENTE, 10 CM E 5 CM. CALCOLA PERIMETRO E AREA DEL RETTANGOLO.

Dati:	Richieste:
Base (<i>b</i>) = 10 cm	Perimetro?
Altezza (h) = 5 cm	Area?

AN EXAMPLE OF PROBLEM FOR CALCULATING URBAN SUBDIVISION:

"CALCULATE THE AREA DELIMITED BY THE RED SQUARE "

